Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(20): 33141-33149, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37859101

RESUMEN

AlxGa1-xAsySb1-y grown lattice-matched to InP has attracted significant research interest as a material for low noise, high sensitivity avalanche photodiodes (APDs) due to its very dissimilar electron and hole ionization coefficients, especially at low electric fields. All work reported to date has been on Al concentrations of x = 0.85 or higher. This work demonstrates that much lower excess noise (F = 2.4) at a very high multiplication of 90 can be obtained in thick Al0.75Ga0.25As0.56Sb0.44 grown on InP substrates. This is the lowest excess noise that has been reported in any III-V APD operating at room temperature. The impact ionization coefficients for both electrons and holes are determined over a wide electric field range (up to 650 kV/cm) from avalanche multiplication measurements undertaken on complementary p-i-n and n-i-p diode structures. While these ionization coefficients can fit the experimental multiplication over three orders of magnitude, the measured excess noise is significantly lower than that expected from the ß/α ratio and the conventional local McIntyre noise theory. These results are of importance not just for the design of APDs but other high field devices, such as transistors using this material.

2.
Opt Express ; 27(4): 5835-5842, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876178

RESUMEN

An avalanche photodiode with a ratio of hole-to-electron ionization coefficients, k = 0, is known to produce negligible excess noise irrespective of the avalanche gain. The low noise amplification process can be utilized to detect very low light levels. In this work, we demonstrated InAs avalanche photodiodes with high external quantum efficiency of 60% (achieved without antireflection coating) at the peak wavelength of 3.48 µm. At 77 K, our InAs avalanche photodiodes show low dark current (limited by 300 K blackbody background radiation), high avalanche gain and negligible excess noise, as InAs exhibits k = 0. They were therefore able to detect very low levels of light, at 15-31 photons per 50 µs laser pulse at 1550 nm wavelength. These correspond to the lowest detected average power by InAs avalanche photodiodes, ranging from 19 to 40 fW. The measurement system's noise floor was dominated by the pre-amplifier. Our results suggest that, with a lower system noise, InAs avalanche photodiodes have high potential for optical detection of single or few-photon signal levels at wavelengths of 1550 nm or longer.

3.
Opt Express ; 26(19): 24904-24916, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30469599

RESUMEN

Conventional thermal imaging cameras, based on focal-plane array (FPA) sensors, exhibit inherent problems: such as stray radiation, cross-talk and the calibration uncertainty of ensuring each pixel behaves as if it were an identical temperature sensor. Radiation thermometers can largely overcome these issues, comprising of only a single detector element that can be optimised and calibrated. Although the latter approach can provide excellent accuracy for single-point temperature measurement, it does not provide a temperature image of the target object. In this work, we present a micromechanical systems (MEMS) mirror and silicon (Si) avalanche photodiode (APD) based single-pixel camera, capable of producing quantitative thermal images at an operating wavelength of 1 µm. This work utilises a custom designed f-theta wide-angle lens and MEMS mirror, to scan +/- 30° in both x- and y-dimensions, without signal loss due to vignetting at any point in the field of view (FOV). Our single-pixel camera is shown to perform well, with 3 °C size-of-source effect (SSE) related temperature error and can measure below 700 °C whilst achieving ± 0.5 °C noise related measurement uncertainty. Our measurements were calibrated and traceable to the International Temperature Scale of 1990 (ITS-90). The combination of low SSE and absence of vignetting enables quantitative temperature measurements over a spatial field with measurement uncertainty at levels lower than would be possible with FPA based thermal imaging cameras.

4.
Sci Rep ; 8(1): 9107, 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29904062

RESUMEN

The electron and hole avalanche multiplication characteristics have been measured in bulk AlAs0.56Sb0.44 p-i-n and n-i-p homojunction diodes, lattice matched to InP, with nominal avalanche region thicknesses of ~0.6 µm, 1.0 µm and 1.5 µm. From these and data from two much thinner devices, the bulk electron and hole impact ionization coefficients (α and ß respectively), have been determined over an electric-field range from 220-1250 kV/cm for α and from 360-1250 kV/cm for ß for the first time. The α/ß ratio is found to vary from 1000 to 2 over this field range, making it the first report of a wide band-gap III-V semiconductor with ionization coefficient ratios similar to or larger than that observed in silicon.

5.
Opt Express ; 26(3): 3188-3198, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29401850

RESUMEN

Accurate quantitative temperature measurements are difficult to achieve using focal-plane array sensors. This is due to reflections inside the instrument and the difficulty of calibrating a matrix of pixels as identical radiation thermometers. Size-of-source effect (SSE), which is the dependence of an infrared temperature measurement on the area surrounding the target area, is a major contributor to this problem and cannot be reduced using glare stops. Measurements are affected by power received from outside the field-of-view (FOV), leading to increased measurement uncertainty. In this work, we present a micromechanical systems (MEMS) mirror based scanning thermal imaging camera with reduced measurement uncertainty compared to focal-plane array based systems. We demonstrate our flexible imaging approach using a Si avalanche photodiode (APD), which utilises high internal gain to enable the measurement of lower target temperatures with an effective wavelength of 1 µm and compare results with a Si photodiode. We compare measurements from our APD thermal imaging instrument against a commercial bolometer based focal-plane array camera. Our scanning approach results in a reduction in SSE related temperature error by 66 °C for the measurement of a spatially uniform 800 °C target when the target aperture diameter is increased from 10 to 20 mm. We also find that our APD instrument is capable of measuring target temperatures below 700 °C, over these near infrared wavelengths, with D* related measurement uncertainty of ± 0.5 °C.

6.
Opt Express ; 26(3): 3568-3576, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29401884

RESUMEN

Avalanche photodiodes (APDs) with thin avalanche regions have shown low excess noise characteristics and high gain-bandwidth products, so they are suited for long-haul optical communications. In this work, we investigated how carrier injection profile affects the avalanche gain and excess noise factors of Al0.85Ga0.15As0.56Sb0.44 (lattice-matched to InP substrates) p-i-n and n-i-p diodes with total depletion widths of 145-240 nm. Different carrier injection profiles were achieved by using light with wavelengths of 420, 543 and 633nm. For p-i-n diodes, shorter wavelength light produces higher avalanche gains for a given reverse bias and lower excess noise factors at a given gain, compared to longer wavelength light. Thus, using 420 nm light on the p-i-n diodes, corresponding to pure electron injection conditions, gave the highest gain and lowest excess noise. In n-i-p diodes, pure hole injection yields significantly lower gain and higher excess noise, compared to mixed carrier injection. These show that the electron ionization coefficient, α, is higher than the hole ionization coefficient, ß. Using pure electron injection, excess noise factor characteristics with effective ionization ratios, keff, of 0.08-0.1 were obtained. This is significantly lower than those of InP and In0.52Al0.48As, the commonly used avalanche materials combined with In0.53Ga0.47As absorber. The data reported in this paper is available from the ORDA digital repository (DOI: 10.15131/shef. DATA: 5787318).

7.
R Soc Open Sci ; 4(5): 170071, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28573013

RESUMEN

When using avalanche photodiodes (APDs) in applications, temperature dependence of avalanche breakdown voltage is one of the performance parameters to be considered. Hence, novel materials developed for APDs require dedicated experimental studies. We have carried out such a study on thin Al1-x Ga x As0.56Sb0.44 p-i-n diode wafers (Ga composition from 0 to 0.15), plus measurements of avalanche gain and dark current. Based on data obtained from 77 to 297 K, the alloys Al1-x Ga x As0.56Sb0.44 exhibited weak temperature dependence of avalanche gain and breakdown voltage, with temperature coefficient approximately 0.86-1.08 mV K-1, among the lowest values reported for a number of semiconductor materials. Considering no significant tunnelling current was observed at room temperature at typical operating conditions, the alloys Al1-x Ga x As0.56Sb0.44 (Ga from 0 to 0.15) are suitable for InP substrates-based APDs that require excellent temperature stability without high tunnelling current.

8.
Opt Express ; 25(3): 2818-2825, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29518998

RESUMEN

With increasing interest over the past decade in space-related remote sensing and communications using near-infrared (NIR) wavelengths, there is a need for radiation studies on NIR avalanche photodiodes (APDs), due to the high radiation environment in space. In this work, we present an experimental study of proton radiation effects on performance parameters of InAs APDs, whose sensitivity extends from visible light to ~3.5 µm. Three irradiation energies (10.0, 31.4, and 58.8 MeV) and four fluences (109 to 1011 p/cm2) were used. At the harshest irradiation condition (10.0 MeV energy and 1011 p/cm2 fluence) the APDs' avalanche gain and leakage current showed a measurable degradation. However, the responsivity of the APDs was unaffected under all conditions tested. The data reported in this article are available from the figshare digital repository (DOI: https://dx.doi.org/10.15131/shef. DATA: 4560562).

9.
Opt Express ; 24(21): 24242-24247, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27828254

RESUMEN

Increasing reliance on the Internet places greater and greater demands for high-speed optical communication systems. Increasing their data transfer rate allows more data to be transferred over existing links. With optical receivers being essential to all optical links, bandwidth performance of key components in receivers, such as avalanche photodiodes (APDs), must be improved. The APDs rely on In0.53Ga0.47As (grown lattice-matched to InP substrates) to efficiently absorb and detect the optical signals with 1310 or 1550 nm wavelength, the optimal wavelengths of operation for these optical links. Thus developing InP-compatible APDs with high gain-bandwidth product (GBP) is important to the overall effort of increasing optical links' data transfer rate. Here we demonstrate a novel InGaAs/AlGaAsSb APD, grown on an InP substrate, with a GBP of 424 GHz, the highest value reported for InP-compatible APDs, which is clearly applicable to future optical communication systems at or above 10 Gb/s. The data reported in this article are available from the figshare digital repository (https://dx.doi.org/10.15131/shef. DATA: 3827460.v1).

10.
R Soc Open Sci ; 3(3): 150584, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27069647

RESUMEN

A single photon avalanche diode (SPAD) with an InGaAs absorption region, and an InAlAs avalanche region was designed and demonstrated to detect 1550 nm wavelength photons. The characterization included leakage current, dark count rate and single photon detection efficiency as functions of temperature from 210 to 294 K. The SPAD exhibited good temperature stability, with breakdown voltage dependence of approximately 45 mV K(-1). Operating at 210 K and in a gated mode, the SPAD achieved a photon detection probability of 26% at 1550 nm with a dark count rate of 1 × 10(8) Hz. The time response of the SPAD showed decreasing timing jitter (full width at half maximum) with increasing overbias voltage, with 70 ps being the smallest timing jitter measured.

11.
Opt Express ; 22(19): 22608-15, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25321730

RESUMEN

An InGaAs/InAlAs Single Photon Avalanche Diode was fabricated and characterized. Leakage current, dark count and photon count measurements were carried out on the devices from 260 to 290 K. Due to better temperature stability of avalanche breakdown in InAlAs, the device breakdown voltage varied by < 0.2 V over the 30 K temperature range studied, which corresponds to a temperature coefficient of breakdown voltage less than 7 mV/K. The single photon detection efficiency achieved in gated mode was 21 and 10% at 260 and 290 K, respectively. However the dark count rates were high due to excessive band-to-band tunneling current in the InAlAs avalanche region.


Asunto(s)
Arsenicales/química , Indio/química , Fosfinas/química , Fotometría/instrumentación , Fotones , Semiconductores , Diseño de Equipo , Temperatura
12.
Opt Express ; 21(22): 25780-7, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24216804

RESUMEN

A linear array of avalanche photodiodes (APDs) comprising of 128 pixels was fabricated from InAs. The uniformity of the dark currents and avalanche gain was investigated at 77, 200 K and room temperature. The array shows highly uniform results apart from some defective pixels at the edge of the arrays. At 200 K and at a wavelength of 2.04 µm, we obtained an unmultiplied responsivity of 0.61 A/W at 0 V, along with a gain of 8.5 at a bias of 10 V.

13.
Opt Express ; 21(7): 8630-7, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23571953

RESUMEN

An Analytical Band Monte Carlo model was used to investigate the temperature dependence of impact ionization in InAs. The model produced an excellent agreement with experimental data for both avalanche gain and excess noise factors at all temperatures modeled. The gain exhibits a positive temperature dependence whilst the excess noise shows a very weak negative dependence. These dependencies were investigated by tracking the location of electrons initiating the ionization events, the distribution of ionization energy and the effect of threshold energy. We concluded that at low electric fields, the positive temperature dependence of avalanche gain can be explained by the negative temperature dependence of the ionization threshold energy. At low temperature most electrons initiating ionization events occupy L valleys due to the increased ionization threshold. As the scattering rates in L valleys are higher than those in Γ valley, a broader distribution of ionization energy was produced leading to a higher fluctuation in the ionization chain and hence the marginally higher excess noise at low temperature.


Asunto(s)
Arsenicales/química , Indio/química , Modelos Químicos , Simulación por Computador , Campos Electromagnéticos , Iones , Semiconductores , Temperatura
14.
Opt Express ; 20(10): 10446-52, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22565669

RESUMEN

The optical and electrical properties of InAs quantum dots epitaxially grown on a silicon substrate have been investigated to evaluate their potential as both photodiodes and avalanche photodiodes (APDs) operating at a wavelength of 1300 nm. A peak responsivity of 5 mA/W was observed at 1280 nm, with an absorption tail extending beyond 1300 nm, while the dark currents were two orders of magnitude lower than those reported for Ge on Si photodiodes. The diodes exhibited avalanche breakdown at 22 V reverse bias which is probably dominated by impact ionisation occurring in the GaAs and AlGaAs barrier layers. A red shift in the absorption peak of 61.2 meV was measured when the reverse bias was increased from 0 to 22 V, which we attributed to the quantum confined stark effect. This shift also leads to an increase in the responsivity at a fixed wavelength as the bias is increased, yielding a maximum increase in responsivity by a factor of 140 at the wavelength of 1365 nm, illustrating the potential for such a structure to be used as an optical modulator.


Asunto(s)
Arsenicales/química , Germanio/química , Indio/química , Fotoquímica/métodos , Puntos Cuánticos , Silicio/química , Absorción , Ensayo de Materiales , Microscopía Electrónica de Transmisión/métodos , Nanotecnología/métodos , Óptica y Fotónica , Teoría Cuántica , Propiedades de Superficie
15.
Opt Express ; 20(10): 10721-3, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22565697

RESUMEN

Quantum dots (QDs) are semiconductor nanocrystals with peculiar optoelectronic properties. Their wide application in light-emitting diodes, solar cells, and the medical and defense fields makes them a potential candidate in the area of photonics and biophotonics. In this feature issue of Optical Materials Express, together with Optics Express we focus on different aspects of semiconducting nanocrystals research, especially on the advances in the synthesis, physical properties, and application of QDs.


Asunto(s)
Nanotecnología/métodos , Puntos Cuánticos , Biofisica/métodos , Luz , Nanopartículas , Óptica y Fotónica , Fotones , Semiconductores , Energía Solar , Temperatura
16.
Opt Express ; 20(8): 8575-83, 2012 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-22513566

RESUMEN

We have performed Helium (He) ion implantation on InAs and performed post implant annealing to investigate the effect on the sheet resistance. Using the transmission line model (TLM) we have shown that the sheet resistance of a p⁺ InAs layer, with a nominal doping concentration of 1x10¹8 cm⁻³, can increase by over 5 orders of magnitude upon implantation. We achieved a sheet resistance of 1x105 Ω/Square in an 'as-implanted' sample and with subsequent annealing this can be further increased to 1x107 Ω/Square. By also performing implantation on p-i-n structures we have shown that it is possible to produce planar photodiodes with comparable dark currents and quantum efficiencies to chemically etched reference mesa InAs photodiodes.

17.
Opt Express ; 20(28): 29568, 2012 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-23388783

RESUMEN

Measurement and analysis of the temperature dependence of avalanche gain and excess noise in InAs electron avalanche photodiodes (eAPDs) at 77 to 250 K are reported. The avalanche gain, initiated by pure electron injection, was found to reduce with decreasing temperature. However no significant change in the excess noise was measured as the temperature was varied. For avalanche gain > 3, the InAs APDs with 3.5 µm i-region show consistently low excess noise factors between 1.45 and 1.6 at temperatures of 77 to 250 K, confirming that the eAPD characteristics are exhibited in the measured range of electric field. As the dark current drops much more rapidly than the avalanche gain and the excess noise remains very low, our results confirmed that improved signal to noise ratio can be obtained in InAs eAPDs by reducing the operating temperature. The lack of hole impact ionization, as confirmed by the very low excess noise and the exponentially rising avalanche gain, suggests that hole impact ionization enhancement due to band "resonance" does not occur in InAs APDs at the reported temperatures.

18.
Opt Express ; 19(23): 23341-9, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-22109211

RESUMEN

High bandwidth, uncooled, Indium Arsenide (InAs) electron avalanche photodiodes (e-APDs) with unique and highly desirable characteristics are reported. The e-APDs exhibit a 3dB bandwidth of 3.5 GHz which, unlike that of conventional APDs, is shown not to reduce with increasing avalanche gain. Hence these InAs e-APDs demonstrate a characteristic of theoretically ideal electron only APDs, the absence of a gain-bandwidth product limit. This is important because gain-bandwidth products restrict the maximum exploitable gain in all conventional high bandwidth APDs. Non-limiting gain-bandwidth products up to 580 GHz have been measured on these first high bandwidth e-APDs.

19.
Opt Lett ; 36(21): 4287-9, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22048393

RESUMEN

The evolution of the dark currents and breakdown at elevated temperatures of up to 450 K are studied using thin AlAsSb avalanche regions. While the dark currents increase rapidly as the temperature is increased, the avalanche gain is shown to only have a weak temperature dependence. Temperature coefficients of breakdown voltage of 0.93 and 1.93 mV/K were obtained from the diodes of 80 and 230 nm avalanche regions (i-regions), respectively. These values are significantly lower than for other available avalanche materials at these temperatures. The wavelength dependence of multiplication characteristics of AlAsSb p-i-n diodes has also been investigated, and it was found that the ionization coefficients for electrons and holes are comparable within the electric field and wavelength ranges measured.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...